bir grup cocuk lazim..sonra bir top ve bir de yedi tane kiremit..yedi kiremit ust uste dizilir, belirli bir mesafe uzaktan sirayla top kiremitlere atilir..tabii o sirada kiremitlerin yaninda bir ebe vardir..kiremitler devrildigi zaman cocuklar kacar, topu alan ebe onlari vurmaya calisir..eger cocuklar ebe onlardan birini vurmadan yikilan kiremitleri tekrar yerine koyabilirlerse ebe olan gene ebedir
bir ebe ve saklanan cocuklar...iyi yere saklandin mi seni asla bulamazlr..bazen oyle olur ki herkes cikar birkac hiyar cikmaz ve ebe:'tamam sizi sobeledi kbul ediyorum' der.. :))) ve bir de kurtarma olayi vardir..sobeleyenler sevdikleri arkadaslarini kurtarirlar..her zaman en ezik ya da yalniz kurtarilmaz ebe olur
Esrarlı Sayı: Pi Ö. Faruk GÜLDEREN/Ocak 2005/Sızıntı
Birçoğumuz, resim yaparken dağların ardından parıldayan güneşi, altın sarısı bir daire; gece nuruyla arzı aydınlatan dolunayı da beyaz bir daire olarak çizmişizdir. İrili ufaklı çemberlerin, renk renk dairelerin resimlerimize kattığı güzelliğin farkına varmış, geometri derslerinde çoğumuz farklı boyutlardaki bu dairelerin ortak sırrı olan, çevresinin çapına oranını ifade eden 'p' sayısını öğrenmişizdir. Bu sabit sayı, Yunan alfabesinin 16. harfi olan 'p' sembolü ile gösterilir. Bir sicim kullanılarak yapılan basit bir ölçmeyle, bu sayının 'yaklaşık' olarak 22/7 yani 3,142857142857... olduğu görülebilir. Fakat bu, p'nin gerçek değeri değildir. Ölçme büyüklüğü önemli olmayan herhangi bir çember çizilir, bu çemberin çevresi ile eşit uzunlukta bir ip temin edilir. Daha sonra ip, çemberin çapı uzunluğunda parçalara ayrılır, görüleceği gibi çap uzunluğunda 3 parça ile çapın yedide birinden biraz kısa bir parça ip elde edilir. Böylece çemberin çevresinin çapına oranı olan p sayısının, 3 tam 1/7 yani 22/7'den biraz daha küçük bir sayı olduğu görülmüş olur. Fakat bu rasyonel bir sayıdır ve bu tip sayılarda virgülden sonraki basamaklar tekrar ettiği takdirde blok şeklinde sonsuza kadar tekrar eder. p sayısı veya Ö2 gibi irrasyonel sayılarda ise, virgülden sonraki basamaklar sonsuza kadar sürekli değişir (kaotik şekilde) ve bir kurala tâbi olmaz. Çoğumuzun hafızasında p sayısı 3,14 veya 22/7 olarak yer etmiş olsa bile, p'nin gerçek değeri bunların ikisi de değildir. Peki bu sayı, yani p, tam olarak kaçtır? İşte bu soru, p sayısını tam olarak hesaplamak isteyenleri 4.000 yıldır meşgul etmektedir. Bilim ve teknolojinin bu kadar ilerlediği günümüzde bile, bir çemberin çapına oranının tam olarak hesaplanamaması, işlem sonsuza kadar devam ettiği için ilâhî hikmetleri açısından üzerinde düşünülmeye değer bir husustur. Tarih boyunca matematikle ilgilenen birçok insan, p sayısını hesaplamak için yıllarını vermiştir. p sayısının 3,141592653589793238... şeklinde sonsuza kadar devam eden bir ondalık rakam serisi olduğu bilinmektedir. Virgülden sonra sonsuz sayıda basamak olduğu ve bir sayının sonsuza oranının sıfır olduğu göz önüne alınırsa, trilyonuncu basamağın bulunmasının bile p'nin bütün serisini bulmaya nispeten ne kadar önemsiz olduğu daha iyi anlaşılabilir. Buradan sonsuza uzanan bir seriyi araştırmanın pratik bir faydasının olmadığı da anlaşılacaktır
En hassas hesaplamalarda bile belli bir basamaktan sonrası önemini yitirdiği halde, insanlar niçin p'nin sonsuza giden basamaklarını bilmek istiyor? Bu sorunun cevaplarından biri, muhtemelen, insanın sınırları ölçme isteği ve sonsuzu anlama iştiyakıdır. Bu sayı ile Yüce Yaratıcı'nın kâinatta vazettiği kanunlar arasında bir münasebet olduğunu düşünenler, bu sayının basamaklarında sanki bir işaret, bir mesaj aramışlardır. 'Allah kanunlarını her zaman geometri ile vazetmiştir.' diyen Eflatun da onlardan biridir. Üstad Bediüzzaman Hazretleri ise konuyu, 20. Söz'de, daha genel bir bakışla şu şekilde değerlendirmiştir: 'Her bir kemalin, her bir ilmin, her bir terakkiyatın, her bir fennin bir hakikat-ı âliyesi var ki, o hakikat, bir İsm-i İlâhî'ye dayanıyor. Pek çok perdeleri ve mütenevvi tecelliyâtı ve muhtelif daireleri bulunan o isme dayanmakla o fen, o kemâlât, o sanat, kemâlini bulur, hakikat olur. Yoksa yarım yamalak bir surette nâkıs bir gölgedir. Meselâ, hendese (geometri) bir fendir. Onun hakikati ve nokta-yı müntehası (en son noktası) , Cenab-ı Hakk'ın 'ism-i ADL (her şeyi yerli yerince ve doğru yapan) ve MUKADDİR'ine (her şeyi belli ölçüler içinde yaratan) yetişip, hendese âyinesinde o ismin hakimane cilvelerini haşmetiyle müşahede etmektir.' p sayısının hesaplanmasındaki tarihî süreç Mısırlılar ile başlar. Mısırlı bir katip olan Ahmes'in MÖ 1650 yıllarında hesapladığı p değeri olan 3,16049... ile gerçek değer 3,14159... arasında yalnızca binde altılık bir hata vardır. O zamanki şartlar dikkate alınırsa bu başarılı bir tespit sayılabilir. Büyük Giza Piramidi'nin bir kenarının yüksekliğine oranının yaklaşık olarak p'nin 2'ye oranı ile aynı olması, p sayısının Mısır estetik ve mimari anlayışındaki yerini göstermektedir. İnsanlar uzun yıllar bu değerle yetindikten sonra Arşimed (MÖ 287-212) p sayısının 3 tam 1/7 den küçük, 3 tam 10/71’den büyük olduğunu bulmuştur. Muhtemelen, Arşimed p sayısının tam olarak bulunamayacağını biliyordu, bu yüzden alt ve üst sınırlarını hesaplamakla yetindi. Bu değerleri bulurken hareket noktası kısaca şu şekilde özetlenebilir: Yarıçapı l olan bir çemberin içine ve dışına Şekil 1'deki gibi iki düzgün altıgen çizilir. Kolayca görülebileceği gibi çemberin çevresi, içteki altıgenin çevresinden uzun ve dıştaki altıgenin çevresinden kısadır, bu da matematik diliyle 6<2p <4Ö3 şeklinde ifade edilir. Dolayısıyla 3
alamanyaya yolcu etmeden once bizimkileri; annem bir tas su ile arabanin ardinda beklerdi..araba giderken arkasindan elindeki bir tas suyu dokerdi ve su gibi gidin su gibi gelin derdi..adetten
sondaki ve bastaki 'p' lerin arasindaki harflerin yernini degistirirsek p ersin p olur... o halde ersin prensip sahibi bir insandir..yok bea her zaman tutmuyor bu; ama her prensip de bir ersin vardir :)))
bir grup cocuk lazim..sonra bir top ve bir de yedi tane kiremit..yedi kiremit ust uste dizilir, belirli bir mesafe uzaktan sirayla top kiremitlere atilir..tabii o sirada kiremitlerin yaninda bir ebe vardir..kiremitler devrildigi zaman cocuklar kacar, topu alan ebe onlari vurmaya calisir..eger cocuklar ebe onlardan birini vurmadan yikilan kiremitleri tekrar yerine koyabilirlerse ebe olan gene ebedir
bir ebe ve saklanan cocuklar...iyi yere saklandin mi seni asla bulamazlr..bazen oyle olur ki herkes cikar birkac hiyar cikmaz ve ebe:'tamam sizi sobeledi kbul ediyorum' der.. :)))
ve bir de kurtarma olayi vardir..sobeleyenler sevdikleri arkadaslarini kurtarirlar..her zaman en ezik ya da yalniz kurtarilmaz ebe olur
Esrarlı Sayı: Pi
Ö. Faruk GÜLDEREN/Ocak 2005/Sızıntı
Birçoğumuz, resim yaparken dağların ardından parıldayan güneşi, altın sarısı bir daire; gece nuruyla arzı aydınlatan dolunayı da beyaz bir daire olarak çizmişizdir. İrili ufaklı çemberlerin, renk renk dairelerin resimlerimize kattığı güzelliğin farkına varmış, geometri derslerinde çoğumuz farklı boyutlardaki bu dairelerin ortak sırrı olan, çevresinin çapına oranını ifade eden 'p' sayısını öğrenmişizdir. Bu sabit sayı, Yunan alfabesinin 16. harfi olan 'p' sembolü ile gösterilir. Bir sicim kullanılarak yapılan basit bir ölçmeyle, bu sayının 'yaklaşık' olarak 22/7 yani 3,142857142857... olduğu görülebilir. Fakat bu, p'nin gerçek değeri değildir. Ölçme büyüklüğü önemli olmayan herhangi bir çember çizilir, bu çemberin çevresi ile eşit uzunlukta bir ip temin edilir. Daha sonra ip, çemberin çapı uzunluğunda parçalara ayrılır, görüleceği gibi çap uzunluğunda 3 parça ile çapın yedide birinden biraz kısa bir parça ip elde edilir. Böylece çemberin çevresinin çapına oranı olan p sayısının, 3 tam 1/7 yani 22/7'den biraz daha küçük bir sayı olduğu görülmüş olur. Fakat bu rasyonel bir sayıdır ve bu tip sayılarda virgülden sonraki basamaklar tekrar ettiği takdirde blok şeklinde sonsuza kadar tekrar eder. p sayısı veya Ö2 gibi irrasyonel sayılarda ise, virgülden sonraki basamaklar sonsuza kadar sürekli değişir (kaotik şekilde) ve bir kurala tâbi olmaz.
Çoğumuzun hafızasında p sayısı 3,14 veya 22/7 olarak yer etmiş olsa bile, p'nin gerçek değeri bunların ikisi de değildir. Peki bu sayı, yani p, tam olarak kaçtır? İşte bu soru, p sayısını tam olarak hesaplamak isteyenleri 4.000 yıldır meşgul etmektedir. Bilim ve teknolojinin bu kadar ilerlediği günümüzde bile, bir çemberin çapına oranının tam olarak hesaplanamaması, işlem sonsuza kadar devam ettiği için ilâhî hikmetleri açısından üzerinde düşünülmeye değer bir husustur. Tarih boyunca matematikle ilgilenen birçok insan, p sayısını hesaplamak için yıllarını vermiştir. p sayısının 3,141592653589793238... şeklinde sonsuza kadar devam eden bir ondalık rakam serisi olduğu bilinmektedir. Virgülden sonra sonsuz sayıda basamak olduğu ve bir sayının sonsuza oranının sıfır olduğu göz önüne alınırsa, trilyonuncu basamağın bulunmasının bile p'nin bütün serisini bulmaya nispeten ne kadar önemsiz olduğu daha iyi anlaşılabilir. Buradan sonsuza uzanan bir seriyi araştırmanın pratik bir faydasının olmadığı da anlaşılacaktır
2..
En hassas hesaplamalarda bile belli bir basamaktan sonrası önemini yitirdiği halde, insanlar niçin p'nin sonsuza giden basamaklarını bilmek istiyor? Bu sorunun cevaplarından biri, muhtemelen, insanın sınırları ölçme isteği ve sonsuzu anlama iştiyakıdır. Bu sayı ile Yüce Yaratıcı'nın kâinatta vazettiği kanunlar arasında bir münasebet olduğunu düşünenler, bu sayının basamaklarında sanki bir işaret, bir mesaj aramışlardır. 'Allah kanunlarını her zaman geometri ile vazetmiştir.' diyen Eflatun da onlardan biridir.
Üstad Bediüzzaman Hazretleri ise konuyu, 20. Söz'de, daha genel bir bakışla şu şekilde değerlendirmiştir: 'Her bir kemalin, her bir ilmin, her bir terakkiyatın, her bir fennin bir hakikat-ı âliyesi var ki, o hakikat, bir İsm-i İlâhî'ye dayanıyor. Pek çok perdeleri ve mütenevvi tecelliyâtı ve muhtelif daireleri bulunan o isme dayanmakla o fen, o kemâlât, o sanat, kemâlini bulur, hakikat olur. Yoksa yarım yamalak bir surette nâkıs bir gölgedir. Meselâ, hendese (geometri) bir fendir. Onun hakikati ve nokta-yı müntehası (en son noktası) , Cenab-ı Hakk'ın 'ism-i ADL (her şeyi yerli yerince ve doğru yapan) ve MUKADDİR'ine (her şeyi belli ölçüler içinde yaratan) yetişip, hendese âyinesinde o ismin hakimane cilvelerini haşmetiyle müşahede etmektir.'
p sayısının hesaplanmasındaki tarihî süreç Mısırlılar ile başlar. Mısırlı bir katip olan Ahmes'in MÖ 1650 yıllarında hesapladığı p değeri olan 3,16049... ile gerçek değer 3,14159... arasında yalnızca binde altılık bir hata vardır. O zamanki şartlar dikkate alınırsa bu başarılı bir tespit sayılabilir. Büyük Giza Piramidi'nin bir kenarının yüksekliğine oranının yaklaşık olarak p'nin 2'ye oranı ile aynı olması, p sayısının Mısır estetik ve mimari anlayışındaki yerini göstermektedir.
İnsanlar uzun yıllar bu değerle yetindikten sonra Arşimed (MÖ 287-212) p sayısının 3 tam 1/7 den küçük, 3 tam 10/71’den büyük olduğunu bulmuştur. Muhtemelen, Arşimed p sayısının tam olarak bulunamayacağını biliyordu, bu yüzden alt ve üst sınırlarını hesaplamakla yetindi. Bu değerleri bulurken hareket noktası kısaca şu şekilde özetlenebilir: Yarıçapı l olan bir çemberin içine ve dışına Şekil 1'deki gibi iki düzgün altıgen çizilir. Kolayca görülebileceği gibi çemberin çevresi, içteki altıgenin çevresinden uzun ve dıştaki altıgenin çevresinden kısadır, bu da matematik diliyle 6<2p <4Ö3 şeklinde ifade edilir. Dolayısıyla 3
Fantom Roketi Patladi
alamanyaya yolcu etmeden once bizimkileri; annem bir tas su ile arabanin ardinda beklerdi..araba giderken arkasindan elindeki bir tas suyu dokerdi ve su gibi gidin su gibi gelin derdi..adetten
sondaki ve bastaki 'p' lerin arasindaki harflerin yernini degistirirsek
p ersin p olur...
o halde ersin prensip sahibi bir insandir..yok bea her zaman tutmuyor bu; ama her prensip de bir ersin vardir :)))
TRT programlarinda hep duyardim: kavaklidere Ankara :))
guzel ve bir o kadar da seksi bir hatun
kafa kesen olumsuz adam :)
yaslan yaslan tekrar genclesmek icin kafa kes..oh ne ala :))